High gene delivery efficiency of alkylated low-molecular-weight polyethylenimine through gemini surfactant-like effect

نویسندگان

  • Shan Liu
  • Wei Huang
  • Ming-Ji Jin
  • Qi-Ming Wang
  • Gan-Lin Zhang
  • Xiao-Min Wang
  • Shuai Shao
  • Zhong-Gao Gao
چکیده

To our knowledge, the mechanism underlying the high transfection efficiency of alkylated low-molecular-weight polyethylenimine (PEI) is not yet well understood. In this work, we grafted branched PEI (molecular weight of 1,800 Da; bPEI1800) with lauryl chains (C₁₂), and found that bPEI1800-C₁₂ was structurally similar to gemini surfactant and could similarly assemble into micelle-like particles. Stability, cellular uptake, and lysosome escape ability of bPEI1800-C₁₂/DNA polyplexes were all greatly enhanced after C₁₂ grafting. bPEI1800-C₁₂/DNA polyplexes exhibited significantly higher transfection efficiency than Lipofectamine 2000 in the presence of serum. Bioluminescence imaging showed that systemic injection of bPEI1800-C₁₂/DNA polyplexes resulted in intensive luciferase expression in vivo and bioluminescence signals that could be detected even in the head. Altogether, the high transfection efficacy of bPEI1800-C₁₂ was because bPEI1800-C₁₂, being an analog of gemini surfactant, facilitated lysosome escape and induced the coil-globule transition of DNA to assemble into a highly organized micelle-like structure that showed high stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates

Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...

متن کامل

Gene Expression and Pulmonary Toxicity of Chitosan-graft-Polyethylenimine as Aerosol Gene Carrier

Chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer has been used for theimprovement of low transfection efficiency of chitosan. The present study aims to test thepulmonary toxicity and efficiency of CHI-g-PEI as an aerosol gene carrier. Mice were exposedto aerosol containing green-fluorescent protein (GFP)-polyethylenimine (PEI) or GFP-CHIg-PEI complexes for 30 min during the development of ...

متن کامل

Gene Expression and Pulmonary Toxicity of Chitosan-graft-Polyethylenimine as Aerosol Gene Carrier

Chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer has been used for theimprovement of low transfection efficiency of chitosan. The present study aims to test thepulmonary toxicity and efficiency of CHI-g-PEI as an aerosol gene carrier. Mice were exposedto aerosol containing green-fluorescent protein (GFP)-polyethylenimine (PEI) or GFP-CHIg-PEI complexes for 30 min during the development of ...

متن کامل

Corrosion Inhibition Effect of Ester Containing Cationic Gemini Surfactants on Low Carbon Steel

α, ω-alkane-bis(N-myristoyloxyethyl-N, N-dimethyl)-diammonium bromide were synthesized<span style="font-size: 10.0pt; line-height...

متن کامل

A Novel Co-polymer Based on Hydroxypropyl α-Cyclodextrin Conjugated to Low Molecular Weight Polyethylenimine as an in Vitro Gene Delivery Vector

A novel co-polymer based on 2-hydroxypropyl-alpha-cyclodextrin cross-linked by low molecular weight polyethylenimine was synthesized as a gene delivery vector. The copolymer could bind and condense DNA tightly. It showed lower cytotoxicity than PEI 25kDa in SK-BR-3 cells. Transfection efficiency was increased over 5.5-fold higher than PEI 25 kDa in SK-BR-3 cells in complete serum medium. It is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014